Stem Cell Scientific Studies and Articles
- Morrison SJ, Wandycz AM, Hemmati HD, Wright DE, Weissman IL. Identification of a lineage of multipotent hematopoietic progenitors. Development. (1997) 124:1929–39.
- Voga M, Adamic N, Vengust M, Majdic G. Stem Cells in Veterinary Medicine-Current State and Treatment Options. Front Vet Sci. 2020;7:278. Published 2020 May 29. doi:10.3389/fvets.2020.00278
- Scherberich A, Di Maggio ND, McNagny KM. A familiar stranger: CD34 expression and putative functions in SVF cells of adipose tissue. World J Stem Cells. 2013;5(1):1-8. doi:10.4252/wjsc.v5.i1.1
- Jensen GS, Hart AN, Zaske LA, Drapeau C, Gupta N, Schaeffer DJ, Cruickshank JA. Mobilization of human CD34+ CD133+ and CD34+ CD133(-) stem cells in vivo by consumption of an extract from Aphanizomenon flos-aquae–related to modulation of CXCR4 expression by an L-selectin ligand? Cardiovasc Revasc Med. 2007 Jul-Sep;8(3):189-202. doi: 10.1016/j.carrev.2007.03.004. PMID: 17765649.
- Ismail ZM, Kamel AM, Yacoub MF, Aboulkhair AG. The effect of in vivo mobilization of bone marrow stem cells on the pancreas of diabetic albino rats (a histological & immunohistochemical study). Int J Stem Cells. 2013 May;6(1):1-11. doi: 10.15283/ijsc.2013.6.1.1. PMID: 24298369; PMCID: PMC3840999.
- Ivetic A, Hoskins Green HL, Hart SJ. L-selectin: A Major Regulator of Leukocyte Adhesion, Migration and Signaling. Front Immunol. 2019;10:1068. Published 2019 May 14. doi:10.3389/fimmu.2019.01068
- Frenette PS, Weiss L. Sulfated glycans induce rapid hematopoietic progenitor cell mobilization: evidence for selectin-dependent and independent mechanisms.Blood 2000;96(7):2460 – 8.
- Merino JJ, Cabaña-Muñoz ME, Pelaz MJ. The Bluegreen Algae (AFA) Consumption over 48 Hours Increases the Total Number of Peripheral CD34+ Cells in Healthy Patients: Effect of Short-Term and Long-Term Nutritional Supplementation (Curcumin/AFA) on CD34+ Levels (Blood). J Pers Med. 2020;10(2):49. Published 2020 Jun 8. doi:10.3390/jpm10020049
- Irhimeh MR, Fitton JH, Lowenthal RM.Fucoidan ingestion increases the expression of CXCR4 on human CD34+ cells. Exp Hematol. 2007 Jun;35(6):989-94. doi: 10.1016/j.exphem.2007.02.009. PMID: 17533053.
- Sweeney EA, Priestley GV, Nakamoto B, Collins RG, Beaudet AL, Papayannopoulou T. Mobilization of stem/progenitor cells by sulfated polysaccharides does not require selectin presence. Proc Natl Acad Sci U S A 2000;97(12):6544 – 9.
- Patterson AM, Pelus LM. G-CSF in stem cell mobilization: new insights, new questions. Ann Blood. 2017;2:10. doi:10.21037/aob.2017.06.02
- Drapeau C, Antarr D, Ma H, Yang Z, Tang L, Hoffman RM, Schaeffer DJ. Mobilization of bone marrow stem cells with StemEnhance improves muscle regeneration in cardiotoxin-induced muscle injury. Cell Cycle. 2010 May;9(9):1819-23. doi: 10.4161/cc.9.9.11540. Epub 2010 May 17. PMID: 20404540.
- Spaas JH, Broeckx S, Van de Walle GR, Polettini M. The effects of equine peripheral blood stem cells on cutaneous wound healing: a clinical evaluation in four horses. Clin Exp Dermatol. (2013) 38:280–4. 10.1111/ced.12068
- Arzi B, Mills-Ko E, Verstraete FJ, Kol A, Walker NJ, Badgley MR, et al. Therapeutic efficacy of fresh, autologous mesenchymal stem cells for severe refractory gingivostomatitis in cats. Stem Cells Transl Med. (2016) 5:75–86. doi: 10.5966/sctm.2015-0127
- Perez-Merino EM, Uson-Casaus JM, Duque-Carrasco J, Zaragoza-Bayle C, Marinas-Pardo L, Hermida-Prieto M, et al.Safety and efficacy of allogeneic adipose tissue-derived mesenchymal stem cells for treatment of dogs with inflammatory bowel disease: Endoscopic and histological outcomes. Vet J. (2015) 206:391–7. doi: 10.1016/j.tvjl.2015.07.023
- Webb TL, Webb CB. Stem cell therapy in cats with chronic enteropathy: a proof-of-concept study. J Feline Med Surg. (2015) 17:901–8. doi: 10.1177/1098612X14561105
- Matsuda T, Takami T, Sasaki R, Nishimura T, Aibe Y, Paredes BD, et al. A canine liver fibrosis model to develop a therapy for liver cirrhosis using cultured bone marrow-derived cells. Hepatol Commun. (2017) 1:691–703. doi: 10.1002/hep4.1071
- Adin CA, Gregory CR, Kyles AE, Cowgill L. Diagnostic predictors of complications and survival after renal transplantation in cats. Vet Surg. (2001) 30:515–21. doi: 10.1053/jvet.2001.28418
- Vidane AS, Pinheiro AO, Casals JB, Passarelli D, Hage M, Bueno RS, et al. Transplantation of amniotic membrane-derived multipotent cells ameliorates and delays the progression of chronic kidney disease in cats. Rprod Domest Anim. (2017) 52(Suppl. 2):316–26. doi: 10.1111/rda.12846
- Kuranda K, Vargaftig J, de la Rochere P, Dosquet C, Charron D, Bardin F, Tonnelle C, Bonnet D, Goodhardt M. Age-related changes in human hematopoietic stem/progenitor cells. Aging Cell. 2011 Jun;10(3):542-6. doi: 10.1111/j.1474-9726.2011.00675.x. Epub 2011 Mar 22. PMID: 21418508.
- McKenna RW, Washington LT, Aquino DB, Picker LJ, Kroft SH (2001) Immunophenotypic analysis of hematogones (B-lymphocyte precursors) in 662 consecutive bone marrow specimens by 4-color flow cytometry. Blood 98, 2498–2507.
More studies found on NIH (National Institutes of Health):
https://pubmed.ncbi.nlm.nih.gov/9169840/
https://pubmed.ncbi.nlm.nih.gov/32656249/
https://pubmed.ncbi.nlm.nih.gov/23362435/
https://pubmed.ncbi.nlm.nih.gov/17765649/
https://pubmed.ncbi.nlm.nih.gov/24298369/
https://pubmed.ncbi.nlm.nih.gov/31139190/
https://pubmed.ncbi.nlm.nih.gov/11001898/
https://pubmed.ncbi.nlm.nih.gov/32521810/
https://pubmed.ncbi.nlm.nih.gov/17533053/
https://pubmed.ncbi.nlm.nih.gov/10841555/
https://pubmed.ncbi.nlm.nih.gov/30465039/
https://pubmed.ncbi.nlm.nih.gov/20404540/
https://pubmed.ncbi.nlm.nih.gov/23517358/
https://pubmed.ncbi.nlm.nih.gov/26582907/
https://pubmed.ncbi.nlm.nih.gov/26526521/
https://pubmed.ncbi.nlm.nih.gov/25480816/
https://pubmed.ncbi.nlm.nih.gov/29404486/
https://pubmed.ncbi.nlm.nih.gov/11704946/
https://pubmed.ncbi.nlm.nih.gov/27774657/
https://pubmed.ncbi.nlm.nih.gov/21418508/
https://pubmed.ncbi.nlm.nih.gov/11588048/